Abrasive sizing

By Dr. David A. Summers, Curators’ Professor at Missouri University of Science & Technology

KMT Waterjet Systems Weekly Waterjet Blog

KMT Waterjet Systems Weekly Waterjet Blog

Over the past 30 years, abrasive waterjet cutting has become an increasingly useful tool for cutting a wide range of materials of varying thickness and strength. However, as the range of applications for the tool has grown, so the requirements for improved performance have also risen. Before being able to make a better quality cut, there had to be a better understanding of how abrasive waterjet cutting works so that the improvements could be made.

Parameters controlling AWJ

Figure 1. Some factors that affect the cutting performance of an abrasive waterjet (Hashish, Mohamed, “The effect of pressure on performance of Abrasive-Waterjet (AWJ) Machining”, Proceedings of Manufacturing International, April, 1988, Atlanta, GA, pp 255 – 263)

This understanding has not been easy to develop since there are many different factors that all affect how well the cutting process takes place. Consider, first of all, the process of getting the abrasive up to the fastest speed possible. And for the purpose of discussion, I am going to use a “generic” mixing chamber and focusing tube nozzle for the following discussion.

Simplified nozzle design

Figure 2. Simplified sketch of a mixing chamber and focusing tube nozzle used in adding abrasive to a high pressure waterjet

As high-pressure water flows through the small orifice (which in the sketch was historically made of sapphire), it enters a larger mixing chamber and creates a suction that will pull abrasive into the mixing chamber through the side passage. That side passage is connected through a tube to a form of abrasive feed mechanism that I will not discuss in detail today.

However, the abrasive does not flow into the mixing chamber by itself. Rather it is transported into the mixing chamber using a fluid carrier. In the some of the earliest models of abrasive waterjet systems, water was used as the carrier fluid to bring the abrasive into the mixing chamber. This, as a general rule, turned out to be a mistake.

The problem is that, within the mixing chamber, the energy that comes into the chamber with the high-pressure water has to mix not only with the abrasive but also with the fluid that carried the abrasive into the chamber. Water is heavier than air, and so if water is the carrier fluid, then it will absorb more of the energy that is available with the result that there is less for the abrasive, which – as a result – does not move as quickly and therefore does not cut as well. The principle was first discussed by John Griffiths at the 2nd U.S. Waterjet Conference, although he was discussing abrasive use in cleaning at the time.

Wet v dry feed

Figure 3. Difference in performance of water acting to carry the abrasive to the mixing chamber (wet feed) in contrast with the use of air as the carrier fluid. (Griffiths, J.J., “Abrasive Injection Usage in the United Kingdom,” 2nd U.S. Waterjet Conference, May, 1983, Rolla, MO, pp. 423 – 432.)

Note that this is not the same as directly mixing the abrasive into the waterjet stream under pressure – abrasive slurry jetting – which I will discuss in later posts.

The difference between the two ways of bringing the abrasive to the mixing chamber is clear enough that almost from the beginning, only air has been considered as the carrier to bring the abrasive into the mixing chamber. However, there is the question as to how much air is enough, how much abrasive should be added and how effectively the mixing process takes place.

In the earlier developments, the equipment available restricted the range of pressures and flow rates at which the high pressure water could be supplied, and these limits bounded early work on the subject.

One early observation, however, was that the size of the abrasive that was being fed into the mixing chamber was not the average size of the abrasive after cutting was over. (At that time steel was not normally used as a cutting abrasive). Because the fracture of the abrasive into smaller pieces might mean that the cutting process became less effective, Greg Galecki and Marian Mazurkiewicz began to measure particle sizes at different points in the process. (Galecki, G., Mazurkiewicz, M., Jordan, R., “Abrasive Grain Disintegration Effect During Jet Injection,” International Water Jet Symposium,Beijing, China, September, 1987, pp. 4-71 – 4-77.)

For example, by firing the abrasive-laden jet along the axis of a larger plastic tube (here opened to show the construction) the abrasive would, after leaving the nozzle, decelerate and settle into the bottom of the tube, without further break-up and without damage to the tube. Among other results, this allowed a measure of how fast the particles leave the nozzle, since the faster they were moving, the further they would carry down the pipe.

Green tube test

Figure 4. Test to examine particle size and travel distance, after leaving the AWJ nozzle at the left of the picture. The containing tube has divisions every foot, and small holes over blue containers, so that the amount caught in every foot could be collected and measured.

For one particular test, the abrasive going into the system was carefully screened to lie in the size range between 170 and 210 microns. It was then fed into a 30,000 psi waterjet at a feed rate of 0.6 lb/minute. The particles were captured after passing through the mixing chamber but before they could cut anything by using the tube shown in Figure 4. The size of the particles was then measured and plotted as a cumulative percentage adding the percentages found at each sieve size over the range to the 210 micron size of the starting particles.

After mixing sizing

Figure 5. Average size of particles after passing through a mixing chamber and exiting into a capture tube without further damaging impact

The horizontal line shows the point where 50% of the abrasive (by weight) had accumulated, and the vertical line shows that this is at a particle size of 140 microns. Thus, just in the mixing process alone, energy is lost in mixing the very fast moving water with the initially much slower moving abrasive.

And, as an aside, this is where the proper choice of abrasive becomes an important part of an effective cutting operation because the distribution of the curve shown in figure 5 will change with abrasive type, size, concentration added as well as the pressure and flow rate of the nozzle through which the water enters the mixing chamber.

I will have more to discuss on this in the next post but will leave you with the following result. After we had run the tests which I just mentioned, we collected the abrasive in the different size ranges. Then we used those different size ranges to see how well the abrasive cut. This was one of the results that we found.

Effect of particle size

Figure 6. The effect of the size of the feed particles into the abrasive cutting system on the depth of cut which the AWJ achieved

You will note that down to a size of around 100 microns the particle size did not make any significant difference, but that once the particle size falls below that range, then the cutting performance degrades considerably. (And if you go back to figure 5, you will note that about 30% of the abrasive fell into that size range, after the jet had left the mixing chamber).

Waterjet Cutting – Introduction to Abrasive Waterjet

By Dr. David A. Summers, Curators’ Professor at Missouri University of Science & Technology

KMT Waterjet Systems Weekly Waterjet Blog

KMT Waterjet Systems Weekly Waterjet Blog

In recent articles in this series, I have written about the processes that occur as a high-pressure waterjet impacts on a surface and then begins to penetrate and cut into it. However, as I noted in the last post, one of the problems with using plain water as the cutting medium is that it can pressurize within the cut and exploit any surrounding cracks to the point that the edges of the cut are cracked and fractured, often back up to the top surface of the material.

Cut along plexiglas

Figure 1. High-pressure waterjet cut along a sheet of Plexiglas, note the fracturing along the sides of the cut.

This is not usually desirable, and what is needed is a way of cutting into these materials, so that the cut edges remain smooth and the risk of shattering around the cut line is much diminished. The way that is usually used for this is to add small amounts of a fine cutting abrasive into the waterjet stream and use this to cut the slots in the material with the water there to add cutting power.

Cut through safety glass

Figure 2. Abrasive waterjet (AWJ) cuts through safety glass. Note that there are two sheets of glass with a thin plastic sheet attached between the two.

This can be of particular advantage if you are faced with trimming, for example, safety glass (as shown in Figure 2). Cutting and shaping this glass used to be a significant problem in the industry, since the presence of the plastic sheet between the two glass layers meant that it was not always possible to get both to break to the same plane if scribed with a glass cutter. Failure rates of up to 30% were described as common when the technology switch to AWJ took place. And with the abrasive in the water, the jet cuts through both layers without really seeing that there was a problem. (And complex contours can also be cut).

The combination of abrasive and high-pressure water has many advantages over existing tools. Among other things, it removes the majority of the heat from the cut zone, so that in almost all cases, the Heat Affected Zone (HAZ) along the edges of the cut disappears and the quality of the cut surface becomes, when properly cut, sufficient to require no further processing. This can lead to a significant savings in certain forms of fabrication.

There are many different ways in which abrasive can be added to a high speed stream of water, and Dr. Hashish illustrated some of these in the introductory lecture he gave at an early WJTA Short Course, as follows:

Means of adding abrasive

Figure 3. Some different ways of introducing abrasive into the cutting stream of a high-pressure waterjet (After Hashish, WJTA Short Course Notes).

The top three (a, b, c) involve mixing the abrasive and the water streams at the nozzle, while the fourth (d) is a relatively uncommon design that is used in cleaning surface applications and the fifth (e) has never been very effective in any trial that we have run. The sixth (e) technique has become known by a number of different names, but for now to distinguish it from the more widely used Abrasive Water Jet cutting (AWJ) I will give it the acronym ASJ, for Abrasive Slurry Jetting. It has a number of benefits in different circumstances, and I will write more about it in future posts. In more recent alternative designs to that shown by Dr. Hashish the flow to the abrasive holding tank is more commonly through a diverted fraction of the total flow from the pump or intensifier.

Abrasive Slurry Jetting Circuit

Figure 4. Very simplified illustration of the circuit where abrasive is added to the flow from the pump/intensifier before the nozzle. Obviously the abrasive is held in a pressurized holding vessel – the optimal design of which is not immediately obvious.

When fine abrasive is added to a narrow waterjet stream and that jet is moving at thousands of feet a second, there are a number of considerations in the design of the mixing chamber, and those will be discussed in future posts. But one early conclusion is that, if the jet is going to be small, then the abrasive that will be mixed with it will also have to be quite small, though – as will be noted in a future post – not too small.

Cutaway view of a cutting head for abrasive waterjet cutting

Figure 5. Cutaway view of a cutting head for abrasive waterjet cutting (ACTIVE AUTOLINE II by KMT Waterjet)

There have been a number of different abrasives used over the years, and it depends on the needs of the job as to which is the most suitable in a given case. In some cases, discriminate cutting is required and so an abrasive can be chosen that will cut the desired layer on the surface but not the material behind it. In other cases, the target material is extremely tough and so abrasive may be selected that will rapidly erode the supply lines and nozzle but which can still prove economically viable in certain cases.

Types of abrasive

Figure 6. Various types of abrasive that can include (from bottom left going clockwise) blasting sand, copper slag, garnet and olivine.

There are many different properties of the cutting system and the abrasive which control the quality and speed of the resulting cut. Some of these will be the topic of the next few posts, others will be discussed in further posts at a more distant time when we discuss different cutting applications and the changes in a conventional system that might be made to get the best results in those cases.

Abrasive properties are not just a case of knowing what the material is. There is a difference, for example, in cutting ability between alluvially mined garnet and that mined from solid rock. There is a difference between different types of the nominally same abrasive when it comes from different parts of the world, and there are differences when the shapes of the abrasive differ. Glass beads and steel shot cut in a different way that glass and steel grit, for example. So there is plenty to discuss as we turn to a deeper discussion of abrasive waterjet cutting.

Parameters controlling Abrasive Waterjet Cutting

Figure 7. Parameters controlling the cutting by an abrasive waterjet system. (After Mazurkiewicz)

Waterjet Cutting – Beginning to cut

By Dr. David A. Summers, Curators’ Professor at Missouri University of Science & Technology

KMT Waterjet Systems Weekly Waterjet Blog

KMT Waterjet Systems Weekly Waterjet Blog

In the last few posts I have been discussing what happens under a waterjet as it first hits, and then penetrates into a target material. In many cases it is recommended that the nozzle move slightly relative to the target during this piercing process so that the water escaping from the developing hole does not have to fight its way past the succeeding slug of water entering the hole.

Now it might be thought that this problem would go away if the nozzle starts at the side of the target and then cuts into it. But this depends on a number of different factors, one of the more critical being as to whether the jet is cutting all the way through the material, or is only cutting a slot part of the way through it. As with a number of other topics, I am going to illustrate some of the concerns using granite as the target material, since it makes it easier to demonstrate some of the points I want to make.

If you were to look at one of the many statues that have been carved from granite over the thousands of years since the rock was first shaped into an art form, the rock usually appears as a relatively homogeneous material. That means (to those who don’t work with rock) that the rock has the same properties regardless of which direction you test them in.

Vermont carver granite

Figure 1. The Italian Carver’s Memorial, Dente Park, Barre, VT (From the Barre Granite Association via State Symbols USA)

However, if you were to ask a skilled quarry man, he would tell you differently. Because of the way that granite cools from the molten state in which it is injected up into the ground, it picks up an orientation to the crystals as they are formed. One of these orientations is roughly horizontal and called the Lift or grain of the rock. A second is perpendicular to this and vertical and is known as the Rift. The third plane, orthogonal to the other two, is called the Hard-Way because it is generally more difficult to work. These names relate to the ways in which the grains of the rock and the cracks around them align. They are virtually impossible for a lay person to detect, and a quarry man may need to feel the rock to tell you which way they lie. But they are used in splitting out the major blocks from the granite massif and come into play in breaking the large blocks down into handle-able sized pieces.

Granite bedding orientations

Figure 2. The A) Hard-Way B) Rift, and C) Lift planes of crystal orientation in granite

If, however, you were to shoot a short slug of water at high-pressure at a piece of granite (and we used the granite from Elberton in Georgia for this) then, depending on which direction the pulse came from relative to the three planes, the amount of rock that would break around the impact point would change.

In an earlier post discussing the splitting that occurs when pressure builds up within the cavity under a jet, I mentioned that the pressure would grow cracks that already existed. And it is for this reason that, when the jet impacts perpendicular to the existing crack planes, the volume of material broken out is greater than it is where the jet fires along the cracks. This can be shown using the cavity profiles from oriented samples into which the jets were fired.

Cavity profiles

Figure 3. Profiles from the cavities created around the impact points where the jet impacted granite blocks at different orientations.

One can use this information if, for example, one wanted to cut a thin line in granite, where the cut should be made in the direction of the crystals, i.e. making cuts along the lines shown in the A plane of figure 2.

Linear cuts on A plane

Figure 4. Linear cuts into granite along the lines shown in Figure 2.

In this set of cuts, the jet is cutting along the favored orientation of the crystals, and the rock only spalls when two jet paths approach each other in the lower right of the block.

If, however, the cuts are made in a direction perpendicular to the orientations, i.e. in the B and C planes, then the results are quite different.

Cratering on linear B

Figure 5. Cratering along the linear passes in cutting granite perpendicular to the Rift plane.

Where the jet strikes perpendicular to the Rift or Lift, then the pressurization under the jet is enough to cause those cracks to grow out to the surface and cause spallation along the cut. In many cases, this removes all the rock between two adjacent passes, even if they are more than an inch apart.

If one is to use the high-pressure waterjet system for slotting granite in a quarry, for example, then this can be a very useful tool, since by merely putting two jets on either side of the desired slot the spalling will remove the material between them without any further jet action. If the jets attack in the perpendicular plane, then the jet has to be rotated over the cut to get the same material removal rate.

In most cases, when cutting in a quarry, because the rock does vary in structure and grain size, it is better to ensure that all the rock is removed before the nozzles move into the cut by rotation. However, in smaller applications – such as where the excess rock is being removed around a planned sculpture –enhancing the spall around the impact point can lower the time and amount of energy required in removing unwanted rock.

That is, however, a relatively specialized application, and in most cases it is desirable that the cut be clean and smooth. This requires the use of abrasive in the waterjet stream, and so this will be the topic of the next few posts.

Cutting through one inch thick glass

Figure 6. Cutting through one inch thick glass, showing the cut through the side of the glass.

Waterjet Technology – The Triangle Cut Comparison Test

By Dr. David A. Summers, Curators’ Professor at Missouri University of Science & Technology

KMT Waterjet Systems Weekly Waterjet Blog

KMT Waterjet Systems Weekly Waterjet Blog

This post is being written in Missouri, and while the old saying about “I’m from Missouri, you’re going to have to show me,” has a different origin than most folk recognize*, it is a saying that has served well over the years. We did some work once for the Navy, who were concerned that shooting high-pressure waterjets at pieces of explosive might set them off as we worked to remove the explosive from the casing. We ran tests under a wide range of conditions and said, in effect, “see it didn’t go off – it’s bound to be safe!” “No,” they replied, “we need to know what pressure causes it go off at, and then we can calculate the safety factor.” And so we built different devices that fired waterjets at pressure of up to 10 million psi, and at that pressure (and usually a fair bit below it) all the different explosives reacted. And it turned out that one of the pressures that had been tested earlier was not that far below the sensitivity pressure of one of the explosives.

That is, perhaps a little clumsily, a lead in to explain why simple answers such as “yes I can clean this,” or “yes I can cut that” often are not the best answers. One can throw a piece of steel, for example, on a cutting table and cut out a desired shape at a variety of pressures, abrasive feed rates (AFR) and cutting speeds. If the first attempt worked, then this might well be the set of cutting conditions that become part of the lore of the shop. After a while it becomes “but we’ve always done it that way,” and the fact that it could be done a lot faster with a cleaner cut, less abrasive use and at a lower cost is something that rarely gets revisited.

So how does one go about a simple set of tests to find those answers? For many years, we worked on cutting steel. Our tests were therefore designed around cutting steel samples because that gave us the most relevant information, but if your business mainly cuts aluminum, or titanium or some other material, then the test design can be modified for that reason.

The test that we use is called a “triangle” test because that is what we use. And because we did a lot of them, we bought several strips of 0.25-inch thick, 4-inch wide ASTM A108 steel so that we would have a consistent target. (Both quarter and three-eighths thick pieces have been used, depending on what was available). The dimensions aren’t that important, though the basic shape that we then cut the strips into has some advantage as I’ll explain. (It later turned out that we could have used samples only 3-inches wide, but customs die hard, and with higher pressures the original size continues to work).

Basic Triangle Shape for waterjet test cutting

Figure 1. Basic Triangle Shape for waterjet test cutting

The choice to make the sample 6-inches long is also somewhat arbitrary. We preferred to make a cutting run of about 3 minutes so that the system was relatively stable, and we had a good distance over which to make measurements, but if you have some scrap pieces that can give several triangular samples of roughly the same shape, then use those.

The sample is then placed in a holder, clamped to a strut in the cutting table and set so that the 6-inch length is uppermost and the triangle is pointing downwards.

The holder for the sample triangle

Figure 2. The holder for the sample triangle

The nozzle is placed so that it will cut from the sharp end of the triangle along the center of the 0.25-inch thickness towards the 4-inch end of the piece. The piece is set with the top of the sample at the level of the water in the cutting table. The piece is then cut – at the pressure, AFR and at a speed of 1.25 inches per minute with the cut stopped before it reaches the far end of the piece, though the test should run for at least a minute after the jet has stopped cutting all the way through the sample.

The piece is then removed from the cutting table and, for a simple comparison, the point at which the jet stopped cutting all the way through the triangle is noted.

Showing the point at which the jet stopped cutting through various samples as a function of the age of the nozzle

Figure 3. Showing the point at which the jet stopped cutting through various samples as a function of the age of the nozzle – all other cutting conditions were the same (a softer nozzle material was being tested which is why the lifetime was so short). The view of the samples is from the underside (A in Fig 1.)

An abrasive jet cuts into material in a couple of different ways – the initial smooth section where the primary contact occurs between the jet and the piece and the rougher lower section where the particles have hit and bounced once on the target, and now widen and roughen the cut. Since some work requires the quality of the first depth, we take the steel samples, and mill one side of the sample, along the lower edge of the cut until the mill reaches the depth of the cut, and then we cut off that flap of material so that the cut can be exposed. Note that the depth is measured to the top of the section where the depth varies.

Typical example of a steel triangle that has been cut and then sectioned to show the quality of the cut

Figure 4. Typical example of a steel triangle that has been cut and then sectioned to show the quality of the cut

I mentioned in an earlier article that we had compared different designs from competing manufacturers. Under exactly the same pressure, water flow and abrasive feed rates, the difference between the cutting results differed more greatly than had been expected.

Sectioned views of six samples cut by different nozzle designs, but at the same pressure, water flow, AFR and cutting speed

Figure 5. Sectioned views of six samples cut by different nozzle designs, but at the same pressure, water flow, AFR and cutting speed

There was sufficient difference that we went and bought second and third copies of different nozzles and tested them to make sure that the results were valid, and they were confirmed with those additional tests. Over the years as other manufacturers produced new designs, these were tested and added into the table – this was the result after the initial number had doubled. (The blue are results from the first nozzle series tests shown above).

Comparative depths of cut using the same pressure and AFR but twelve different commercially available nozzle designs

Figure 6. Comparative depths of cut using the same pressure and AFR but twelve different commercially available nozzle designs

There were a number of reasons for the different results, and I will explain some of those reasons as this series continues, but I will close with a simple example from one of the early comparisons that we made. We ran what is known as a factorial test. In other words the pressure was set at one of three levels and the AFR was set at one of three levels. If each test ran at one of the combination of pressures and AFR values and each combination was run once then the nine results can be shown in a table.

Depths of cut resulting from cutting at jet pressures of 30,000 to 50,000 psi and AFR of 0.6, 1.0 and 1.5 lb/min

Figure 7. Depths of cut resulting from cutting at jet pressures of 30,000 to 50,000 psi and AFR of 0.6, 1.0 and 1.5 lb/min

The results show that there is no benefit from increasing the AFR above 1 lb/minute (and later testing showed that the best AFR for that particular combination of abrasive type, and water orifice and nozzle diameters was 0.8 lb/minute).

Now most of my cutting audience will already know that value and may well be using it but remember that these tests were carried out over fifteen years ago, and at that time, the ability to save 20% or more of the abrasive cost with no loss in cutting ability was a significant result. Bear also in mind that it only took 9 tests (cutting time of around 30 minutes) to find that out.

__________________________________________

* The reason that the “I’m from Missouri, you’ll have to show me,” story got started was that a number of miners migrated to Colorado from Missouri. When they reached the Rockies they found that, though the ways of mining were the same, the words that were used were different. (Each mining district has its own slang). Thus they asked to be shown what the Colorado miners meant, before they could understand what the words related to.